Multiplication operators in BV spaces

نویسندگان

چکیده

Abstract The aim of this paper is to provide necessary and sufficient conditions on the generator a multiplication operator acting in spaces functions bounded Young Riesz variation so that it is, among other things, invertible, continuous, finite rank, compact, Fredholm or has closed range. Furthermore, we characterize various spectra such operators give some estimates their measure non-compactness.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplication Operators on Generalized Lorentz-zygmund Spaces

The invertible, compact and Fredholm multiplication operators on generalized Lorentz-Zygmund (GLZ) spaces Lp,q;α, 1 < p ≤ ∞, 1 ≤ q ≤ ∞, α in the Euclidean space R, are characterized in this paper.

متن کامل

Matrix multiplication operators on Banach function spaces

Let (Ω,Σ,μ) be a σ -finite complete measure space and C be the field of complex numbers. By L(μ ,CN), we denote the linear space of all equivalence classes of CN-valued Σ-measurable functions on Ω that are identified μ-a.e. and are considered as column vectors. Let M◦ denote the linear space of all functions in L(μ ,CN) that are finite a.e. With the topology of convergence in measure on the set...

متن کامل

Multiplication Operators between Lipschitz-Type Spaces on a Tree

Let L be the space of complex-valued functions f on the set of vertices T of an infinite tree rooted at o such that the difference of the values of f at neighboring vertices remains bounded throughout the tree, and let Lw be the set of functions f ∈ L such that |f v − f v− | O |v|−1 , where |v| is the distance between o and v and v− is the neighbor of v closest to o. In this paper, we character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata

سال: 2022

ISSN: ['1618-1891', '0373-3114']

DOI: https://doi.org/10.1007/s10231-022-01260-4